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This paper describes a semi-analytical solution of the polydispersed wet steam 
equations, valid in regions where the nucleation rate is negligible. The solution can 
be used in conjunction with any conventional turbomachinery calculation procedure 
to obtain estimates of the magnitude of departures from thermal equilibrium. For 
example, from an initial estimate of the pressure distribution, it is a simple matter 
to calculate the distribution of supercooling and wetness fraction, together with the 
thermodynamic losses incurred by the flow. 

The method differs from the usual numerical approach by providing general 
results which give considerable physical insight. Computational time and effort is 
also dramatically reduced. The controlling parameters emerge naturally from the 
analysis, and information concerning the fundamental fluid mechanics of wet steam 
is revealed. In particular, the analysis demonstrates the role played by the thermal 
relaxation time and the rate of expansion in controlling the deviation from equilibrium. 

The versatility and usefulness of the technique in furnishing results for the 
turbine designer are demonstrated by a number of applications including one- 
dimensional nozzle flows and two-dimensional blade-to-blade and hub-to-tip flows. 
In each case it is shown how the droplet size and expansion rate influence the 
thermodynamic losses and other flow variables of interest 
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Numerical calculation procedures for one- 
dimensional nucleating steam flows show good agree- 
ment with data from condensation shock experiments 
in converging-diverging nozzles 1-a. Despite a sparsity 
of data in some regimes, predictions of pressure and 
droplet size distributions can be made over a wide 
range of conditions with considerable confidence 4. 
Attempts to apply similar methods to flows in steam 
turbines have also met with some success 5'6, but so 
far the turbine designer has shown a reluctance to 
introduce the extra complications into his design pro- 
cedures and most turbines are still analysed assuming 
the steam to remain in equilibrium below the satur- 
ation line. 

Most published work in the literature of wet 
steam concerns itself with primary nucleation and 
droplet growth. From the point of view of the steam 
turbine designer, however, this is just one of a number 
of phenomena which are of interest and which affect 
the performance of the machines. The primary 
nucleation zone occupies a comparatively small 
region, usually in one particular blade row, and for 
the remainder of the expansion the droplet number 
per unit mass of steam remains approximately con- 
stant. Secondary nucleations may occur where the 
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expansion rate is high, but nevertheless the flow is 
substantially non-nucleating for most of its passage 
through the wet stages of the turbine. The analysis of 
this type of flow presents fewer problems than when 
the droplet number is changing continually and forms 
the subject of this article. 

The fact that the steam is non-nucleating does 
not imply, of course, that the two-phase mixture is at 
equilibrium and the vapour phase always remains at 
least slightly supercooled due to the inability of the 
condensation rate to keep pace with the changing 
state of the gas. In regions of high expansion rate the 
vapour supercooling may be considerable, but the 
droplet temperature always remains close to the satur- 
ation value. The resulting interphase temperature 
difference not only provides the driving force for 
condensation, but is also responsible for an overall 
entropy increase of the flow. This in turn leads to a 
reduction in turbine efficiency referred to as the 
thermodynamic wetness loss. Departures from equili- 
brium also affect the steam density and velocity distri- 
bution which in turn may affect the aerodynamic 
performance of the turbine. 

Although the fog droplets in the main body of 
the flow are very fine (0.05 < r < 1.0 ~.m) and closely 
follow the vapour streamlines, a small proportion 
deposit on the surface of the blades and are stripped 
from the trailing edges in the form of large coarse 
water droplets (r > 20 Ixm). These droplets are respon- 
sible for the erosion of the moving blades, but their 
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thermal interaction with the vapour phase is negli- 
gible due to their very small total surface area. There- 
fore they can be ignored in any theory dealing with 
the effects of condensation on the flow. 

By confining the analysis to non-nucleating 
steam flows, it is tacitly assumed that the droplet size 
spectrum is already known by, for example, direct 
measurement in the turbine using a light scattering 
technique 7. Alternatively a number of calculations 
might be performed over a range of different droplet 
sizes in order to gauge the importance of the various 
effects. The problem of estimating the size of droplets 
formed during the primary nucleation in a turbine is, 
as yet, unsolved and it is doubtful whether a complete 
understanding will be forthcoming in the foreseeable 
future. By sidestepping the difficulty, however, and 
using the comparatively simple analytical techniques 
described below, the turbine designer can obtain both 
physical insight and useful quantitative information. 

The paper is divided into two parts. In the first 
the theory of non-nucleating polydispersed wet steam 
flows is developed from an analytical standpoint. This 
is in contrast to the usual numerical approach and has 
the advantages that the controlling parameters emerge 
naturally from the analysis and the results are easily 
generalised. In the second part some applications of 
the theory to real flows in turbines are described. The 
list is by no means exhaustive, but gives some 
examples of how the analysis can be used to estimate 
the magnitude of departures from thermal equili- 
brium and the aero-thermodynamic consequences. 

Gas dynamic equations 
Equations governing the flow of wet steam have been 
derived elsewhere, (see, for example, Ref 8). They are 
presented here in a convenient vector differential form 
and an outline of their derivation is included in order 
to introduce the underlying assumptions. 

Wet steam is assumed to be a homogeneous mixture 
of vapour, at pressure p and temperature Tg, and 

spherical water droplets of various sizes. The con- 
tinuous distributions of droplets is discretized into a 
number of groups such that the ith group contains n i 
droplets per unit mass of mixture of radius ri and mass 
mi. The wetness fraction y~ is then the sum of contribu- 
tions from all groups and is given by: 

Y=Y Yi =Y~ nim~ (1) 

If the vapour density is pg, the mixture density 
(neglecting the volume of the liquid phase) is: 

p =  Pg (2) 
1 - y  

and the mixture specific enthalpy is: 

h = (1 - y)hg+E y,h, (3) 

where hg and hi are the specific enthalpies of the 
vapour phase and ith group of droplets respectively. 

Considerable mathematical simplification 
results if it is assumed that there is negligible velocity 
slip between the phases. Under this condition, and in 
the absence of nucleation, the n~ remain constant 
along a streamline even in the general case of three- 
dimensional flow. The approximation can be justified 
for the size range of fog droplets found in low pressure 
nozzles and turbines (0.05p.m<r<0.5p.m),  but 
needs further investigation for high pressure calcula- 
tions where the droplet sizes tend to be larger ( r< 
2.0 Ixm). 

Adopting this assumption for the present, the 
gas dynamic equations for inviscid adiabatic unsteady 
two-phase flow can be written as: 

Continuity aP+V.(pV)=O (4) 
ot 

Momentum OV+(v. v)v+VP=o 
Ot p 

Energy 

(5) 

~[p(e+~-)]+V.[pV(h+~-)]=O 
(6) 

Notation 
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Specific heat capacity 
Specific internal energy 
Function defined by Eq (24) 
Stagnation specific enthalpy 
Specific enthalpy 
Latent enthalpy 
Knudsen number 
Mean free path 
Mass of a liquid droplet 
Number of droplets per unit mass of 
steam 
Pressure 
Rate of expansion, D(ln p)/Dt 
Radius of droplet 
Specific entropy 
Temperature 
Vapour supercooling 
Capillary supercooling 

AT~ 
t 
V 
Y 
O/ 

/3 

P 
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Excess supercooling, A T - A Tcap 
Time 
Velocity 
Wetness Fraction 
Coefficient of expansion 
Isothermal compressibility 
Thermal energy loss coefficient 
Density 
Surface Tension 
Thermal relaxation time 
Mass Flow coefficient 

Subscripts 
g Vapour phase 
i Liquid phase (ith droplet group) 
s Saturation 
eq Equilibrium 
Lack of a subscript indicates that the vari- 
able is a mixture property 
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where V is the common velocity of the two phases 
and e is the specific internal energy of the mixture. 

Eqs (4)-(6) are identical to those describing the 
adiabatic flow of an inviscid single-phase fluid. The 
differences are apparent, however, when it is recalled 
that the wetness fraction y in Eqs (2) and (3) is not 
necessarily the equilibrium value and that hg and the 
hi in Eq (3) are evaluated at temperatures Tg and T~ 
which are not necessarily equal to the local saturation 
value T,. 

By combining Eqs (4) and (6), it follows 
immediately that in steady adiabatic flow it is possible 
to define a stagnation enthalpy: 

V 2 
n = (1 - y)hg+E y~h ,+-~  (7) 

which remains constant along a streamline: The same 
is not true, however, if velocity differences exist 
between the phases. 

S t e a m  p r o p e r t i e s  

It is customary to assume that the partial pressure of 
the droplets is negligible. The equation of state of the 
vapour phase can then be expressed quite generally 
by: 

Pg = P.( V, Tg) (8) 

o r :  

dpg = (/3p) - ~ - ( a T g )  dT~ 
pg - -  Tg (9) 

where c~ is the coefficient of thermal expansion and 
/3 is the isothermal compressibility. Any convenient 
equation of state can be employed: that used for the 
calculations presented below is of truncated virial 
form 4. 

The density, specific enthalpy, specific entropy 
and surface tension of the liquid phase are assumed 
to be functions of temperature only and are given 
empirically by suitable polynomials. The same is true 
of the saturation properties and the dynamic viscosity 
and thermal conductivity of the vapour phase. 

Growth of the liquid phase 
The growth rate of the liquid phase can be related to 
the growth rate of individual droplets through Eq (1). 
Noting that the mass of a droplet of the ith group is 
given by: 

4 3 mi = 57rri Pi (10) 

it follows that: 

Dy ~ Dy~=y3yi  Dr~ (11) 
Dt = -  Dt - ri Dt 

where the differentiation with respect to time is the 
substantive derivativd, ie D / D t  = O/Ot + V .  V. 

Condensation on a liquid droplet is a process" 
which proceeds at a rate governed by the ability of 
the vapour to conduct the released latent enthalpy 
away from the droplet surface. A derivation and dis- 
cussion of the droplet growth equation has been pres- 
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ented elsewhere 4 and the generally accepted form, 
valid over a wide range of pressures and flow regimes, 
is that of Gyarmathy . This is conveniently expressed 
a s :  

Dri A~ 
(hg- h,) D~- = r,p,(1 + 3.78Kn, /Prg)  ( T , -  Tg) (12) 

where hg and Prg are the thermal conductivity and 
Prandtl number of the vapour phase respectively and 
Kni is the Knudsen number of droplets in the ith 
group given by 

/---¢ (13) Kn i = 2r i 

[g being the mean free path of a vapour molecule. 
By combining a mass transfer equation with 

Eq (12), Gyarmathy also showed that, to a good 
approximation, the phase temperature difference is 
given by: 

Ti - Tg = A T - A Tcap,i (14) 

where A T  = T s - T  z is the vapour supercooling and 
A T c a p ,  i is the capillary supercooling of the droplet 
given by 

2o'iT s 
A T c a p  i - -  ( 1 5 )  

' pirihfg 

~r~ being the surface tension of the liquid at tem- 
perature T~. 

For reasons which will emerge later, it is con- 
venient to define a t hermal  re laxat ion t ime  by: 

(1 - y)Cpgri2Pi(1 + 3.78Kni /Prg)  
"PT,i - -  3 A g y  i (16) 

where Cpg is the isobaric specific heat capacity of the 
vapour. 

Substituting Eqs (12), (14) and (16) into Eq. 
(11) gives: 

( h g  - hi) Dyi = (1 - y ) C p ~ , ( A T  --  A T c a p , i )  (17) 
Dt ZT.i 

Eq (17) shows that the time rate of change of yi 
following a given fluid particle is directly propor- 
tional to the excess of the vapour supercooling above 
the liquid capillary supercooling and is inversely 
proportional to the thermal relaxation time. 

Fig 1 shows the thermal relaxation time as a 
function of droplet radius for various pressures and 
demonstrates that it varies from about 1 ~s to several 
ms. The flow transit time through a nozzle or blade 
passage depends on the rate of expansion, but typi- 
cally is of the order of 0.1-1.0 ms. It follows that under 
certain flow conditions thermal relaxation effects can 
be significant. 

Thermal non-equilibrium 
The secret of obtaining quantitative information 
about wet steam flows is to obtain the variation of 
supercooling throughout the expansion. Once this is 
known, all other variables follow immediately. Nor- 
mally the complete system of gas dynamic and droplet 
growth equations are solved numerically, but this can 
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be a time consuming business, especially for a poly- 
dispersed flow with a large number of droplet groups. 
A much simpler, semi-analytical procedure is, 
however, possible and this is now described. 

Taking the scalar product of the momentum 
Eq (5) with V and combining the Eq (4) and (6) in 
the usual way gives: 

Dh 1 Dp 
- -  = ( 1 8 )  
Dt p Dt 

(Note that this does not imply zero entropy increase 
as it would do in single phase flow). Introducing Eq 
(3) and the growth law (Eq (17)) gives: 

(1 - y) ~ + ~  -~-7 ) ~ D h i  (1 - y)cp~(AT_AT~,p.~) 
Dt Yi l.)t ---- "/'T,i 

(1  - y )  Dp 
= - -  - -  (19) 

pg Dt 

The change in vapour enthalpy can be expressed using 
standard thermodynamic relationships by: 

Dh, DTg+ (1-aTg)  Dp 
Dt = Cpg Dt pg Dt 

The changes in the h~ are given by: 

Dhi DTi DT~ 
Dt = q - - ~ =  ci Dt 

(20) 

(21) 
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Fig 1 
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Thermal relaxation time 

10 ° 

where ci is the specific heat capacity of the liquid and 
where the change in capillary supercooling of each 
droplet group has been ignored, this being quite negli- 
gible. 

Substituting Eqs (20) and (21) in Eq (19) and 
using the Clausius-Clapeyron equation in the form: 

DTs Ts Dp 
Dt - p, hfg Dt (22) 

gives, after some manipulation: 

D T ) + ~  (AT-AT~ap,,) F ( 1 D ~ t )  
Dt (A rT,i -- .,- --~- (23) 

where: 

p_ rcr _ 
F (1-y)cp,p~[ hfg (1-y)(aTg)p~] (24) 

c being the specific heat capacity of the mixture: 

C = ( 1  - -  y ) C p g M F ~  y iCi  ( 2 5 )  

Eq (23) can be written: 

D (AT)+(AT-ATcap) F D(ln p____ ) (26) 
Dt rT Dt 

w h e r e :  

1 1 
- - = E - -  (27) 
7" T TT, i 

and: 

a Toap = E rT a Toap,, (28) 
TT,i 

This demonstrates how thermal non-equilibrium 
effects in a polydispersed flow of wet steam may be 
represented computationally by an equivalent 
monodispersed flow. Eqs (27) and (28) define suitable 
average values of thermal relaxation time and capil- 
lary supercooling (and hence an average droplet 
radius) which, when used in conjunction with Eq 
(26) predict the same value of supercooling as is obser- 
ved with a fully polydispersed flow. 

Defining the excess supercooling A Tx by: 

A Tx = A T - A Tcap (29) 

and neglecting the variation of A Tcap with time, Eq 
(26) becomes: 

~tt (A Tx) + = F# (30) 
h Tx 

TT 

where Gyarmathy's notation of p.has been used for 
the rate of expansion D(ln p)/Dt. AT, represents the 
driving potential for phase change or, alternatively, 
a measure of the departure from thermal equilibrium. 
Except for very small droplets it is substantially the 
same as AT, (ATcap~-IK for r =  0.021xm), and the 
difference will often be ignored in the remaining 
analysis. 

Apart from very minor approximations, Eq (30) 
is an exact first order differential equation for the 
variation with time of supercooling of a fluid particle 
and is valid for the general case of unsteady, three- 
dimensional flow. It has not appeared in the literature 
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previously and is an extremely convenient formula- 
tion for all types of wet steam calculation. F is a 
function predominantly of the saturation conditions 
and its variation with pressure, which is very slight, 
is shown in Fig 2 for zero wetness fraction and super- 
cooling. 

For values of Zx which are small compared 
with the flow transit time, Eq (30) is the archetype of 
a mathematically stiff differential equation. In these 
circumstances numerical integration procedures 
using conventional finite differencing would lead to 
the unstable amplification of errors unless very small 
time increments were employed. Most computational 
problems associated with the numerical solution of 
the wet steam equations can be traced to this cause. 
The solution is to integrate Eq (30) analytically over 
time increments such that ~'T and F/5 remain sensibly 
constant. As rr  changes only slowly through an 
expansion, the size of the increments is then dictated 
by the rate of change of flow properties rather than 
by the relaxation time. Adopting this technique, Eq 
(30) can be integrated to give: 

A Tx = A Txo e -t/,~ + " r T F / 5 ( 1  - -  e -t /~r) (31) 

where A Txo is the excess supercooling at the start of 
the time increment, t=0 .  Eq (31) can be applied 
stepwise through the expansion, the accuracy 
obtained being controlled by the size of the incre- 
ments used. Usually very large steps can be taken and 
need only be reduced in regions where the expansion 
rate changes rapidly. (In practice quite reasonable 
estimates of the departure from equilibrium may be 
obtained easily by approximating the expansion with 
a single step and adopting average values of ZT, F and 
/5.) 

When dealing with polydispersed flows, a word 
of caution is in order. The validity of the use of a 
single relaxation time to characterise a polydispersion 
remains to be established. It is therefore possible that 
under certain circumstances the relaxation times for 
individual droplet size groups may change quite 
rapidly, for example following a nucleation, thus 
making the integration of Eq (30) by the above 
method prone to error. 

The variation of wetness fraction throughout 
the expansion can be obtained by combining Eq (1), 
(17), (27), (28) and (29) to give: 

Dg (1 - -  V ) C p g A T x  
- - =  
D t h~grr (32) 

74 -5C 

p,  c~  L L, sJ / 

- 70 I I I 
i0 2 i0 -I i0 O I01 102 

Pressure, bar 

Fig 2 Variation of F with pressure 
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where the terms (hg- hi) have been approximated by 
h~g, the latent enthalpy. Substituting Eq (31) and 
integrating gives: 

(1 - y)cpg [(A Txo- A Tx) + F/St] (33) Y- go = h~g 

where yo is the wetness fraction at the start of the 
increment and a suitable average value is assumed for 
the slowly varying function (1-y)Cpg/hfg. Eq (33) is 
also only valid over increments such that F/5 is sen- 
sibly constant. 

It is now possible to demonstrate in a par- 
ticularly simple way many of the effects of thermal 
non-equilibrium. For clarity, the discussion is limited 
to flows where ZT and F/5 remain constant, but broadly 
similar conclusions apply to cases where the rate of 
expansion is continually changing. 

First, it is evident from Eqs (31) and (33) that two 
limiting cases can be identified. For very small drop- 
lets 7"v-*0 and: 

ATx-*0 / 

y ~  Yeq = yo+ (1 -- y)cpg(Ff~t) ~ (34) 
/ l f g  g 

corresponding to equilibrium flow. Conversely the 
limiting case of frozen flow occurs for large droplets 
where ZT-* oO and: 

A rx~ A rxo + F/5t 1 
(35) 

Y~ Yo J 

For intermediate values of ZT, the excess supercooling 
approaches a constant value as t becomes large. 

AT×~rTF/5 for t>>rT (36) 

Somewhat surprisingly, therefore, the supercooling 
does not increase indefinitely, but tends to a steady 
state condition of dynamic equilibrium governed by 
the product of rT and /5. As Eq (31) clearly shows, 
however, the duration of the transient phase leading 
to this condition is determined solely by the thermal 
relaxation time and not by the expansion rate. 

Combining Eqs (33) and (34) yields: 

(geq - g) = (1 - y )  cp~ (A Tx - A Txo) (37) 
16fg 

<2 

Fig 3 

Steady state ( t  > >  "[ T ) 

A T  - -  "~TFp 

(Equilibrium flow, "Or--O) 

Time (or pressure) 

Development of supercooling in an expansion 

Int. J. Heat & Fluid Flow 85 



J. B. Young 

showing that the deviation from the equilibrium wet- 
ness fraction is a function only of AT~ and therefore 
tends also to a constant value after the initial transient 
phase. 

All the effects described above are shown 
schematically in Figs 3 and 4 which show the 
development of the excess supercooling and the wet- 
ness fraction as functions of time for various values 
of "r T. 

Thermal losses 

The temperature difference between the liquid and 
vapour phases causes an irreversible heat and mass 
transfer resulting in an increase in entropy of the 
mixture. This process is usually referred to as the 
thermodynamic loss and is partially responsible for 
the reduction in work output of turbines operating 
below the saturation line. 

It has been shown by a number of authors that 
the rate of increase of entropy due to thermal non- 
equilibrium effects (DsT/Dt) is given, to a good 
approximation, by: 

DST= hf~A TDy=(1 - y)cp~ &T 2 
(38) 

Dt Ts 2 Dt T~ ZT 

Eq (38) is normally solved numerically, but can, in 
fact, be integrated analytically over regions of con- 
stant F~6 by introducing the supercooling equation 
(Eq (31)). Neglecting ATcap the result is: 

AST = (1-- y)cpg~aT~ll e_2,/~ 
T~ [--2---' - ' 

+ F#~'ra To(1 - e-'/'~) 2 

+(Ffg,rT)e[ t--2(1--e-t/'~)+l (1--e-et/'~)] } 

(39) 
Consider now an expansion from equilibrium (&To = 
0) with a constant rate of expansion. According to Eq 
(39) the entropy increase is given by: 

ASTE=(I--¢dCP$(Ffg~'T)2[~T--2(X--e-t/'T) 

+l (1-e-Zt/'~)] (40) 

} 

/ / / ~  Frozen flow, ~ r--m 
Yo 

Time (or pressure) 

Fig 4 Growth of the liquid phase in an expansion 

For both equilibrium flow (TT-* 0) and frozen 
flow (~'T-* o0), Eq (40) shows that ASTE--> 0. Intermedi- 
ate values of Zv, however, give positive increases in 
entropy. 

This surprising result suggests that the ther- 
modynamic loss increases with rT, passes through a 
maximum and decreases to zero for large values of 
fT. In arriving at this conclusion, however, the full 
implications of the departure from equilibrium have 
been neglected. 

At each stage of an expansion the deviation 
from thermal equilibrium is measured by the super- 
cooling. If the expansion were terminated at this point 
a relaxation process would subsequently occur in 
which the supercooling decayed to zero. If this were 
to happen at constant pressure (an excellent assump- 
tion for the flow emerging from a blade passage) Eq 
(39) shows that the corresponding entropy increase 
would be: 

(1 - -  y)Cpg AT 2 
ASTR 2 (41) 

T~ 2 

A T being the supercooling at the end of the expansion 
or start of the relaxation zone. In any real process it 
is impossible to avoid this relaxation loss and hence 
the total thermodynamic loss at any stage in the 
expansion is given more realistically by: 

AST = ASTE + ASTr{ (42) 

Hence 

AST=(a--¢~Cpg(FfrrT)2[t--(1--e-t/'T)] (43) 

Equation (43) shows that the total thermodynamic 
loss increases monotonically with thermal relaxation 
time. 

The increase in entropy in a non-equilibrium 
expansion causes a reduction in efficiency of nozzles 
or turbine blades because the exit velocity is lower 
than the corresponding exit velocity when the flow 
is isentropic. It is interesting to note, however, that 
from the point of view of the nozzle performance, 
the total loss AST given by Eq (43) has effectively been 
incurred at the end of the expansion (before the relaxa- 
tion process) where the entropy increase is given by 
ASTE. The explanation can be found in Fig 5 which 

Non equilibrium ~ .  ~ 6a- 

Loss of work i I Non-equilibrium constant 
r pressure relaxation zone ahG2{asrE.asr.: i i 

Entropy 

Fig 5 Entropy production in a 
expension 

non-equilibrium 
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shows the state path for a typical expansion on a 
non-equilibrium enthalpy-entropy diagram. During 
the constant pressure relaxation process the enthalpy, 
and hence the steam velocity, remains constant 
although the entropy increases. Thus the relaxation 
process simply involves a 'hea t  and mass transfer 
between the phases in order to equalise the tem- 
peratures, the velocity remaining constant. It is, there- 
fore, entirely appropriate to represent the thermody- 
namic loss at any stage in an expansion by Eq (43) 
despite the fact that, at that point, the only entropy 
increase incurred is that given by Eq (40). Concep- 
tually it is possible for the relaxation process to take 
place with zero increase in entropy for one could 
imagine the temperature difference between a droplet 
and the surrounding vapour being used to drive a 
reversible heat engine, the work output from which 
could be used to accelerate the gas stream. Practically, 
of course, this is totally impossible. 

From an engineering viewpoint, it is useful to 
represent the thermodynamic entropy increase in the 
form of a loss coefficient. The turbine designer has 
access to a large number of correlations for profile 
and secondary viscous losses, but at present has little 
idea of the magnitude of the thermodynamic loss. 
The most suitable form is the thermal energy loss 
coe~cient defined by: 

TsAST 
~T = (V~/2) (44) 

where AST is the total thermodynamic entropy 
increase, V is the nozzle or blade exit relative velocity 
and Ts is the saturation temperature at the exit static 
pressure. 

Applications 
The theory described in the previous sections can be 
used in conjunction with a number of different 
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turbomachinery calculation procedures to investigate 
non-equilibrium effects in turbines. In order to apply 
Eqs (31), (33) and (43), however, it is necessary to 
know, at least approximately, the pressure distribution 
throughout the flow field. Experience with numerical 
wet steam calculations has indicated that there is 
usually very little difference between the pressures 
calculated under equilibrium or non-equilibrium 
conditions. An excellent approximation can therefore 
be obtained by adopting the equilibrium distribution, 
which is usually available anyway as the result of 
pure aerodynamic calculations. More accurate results 
can be generated by iterating on the pressure, but this 
is hardly necessary and is not in the spirit of the 
present work, which seeks to provide simple methods 
of reasonable accuracy for estimating the importance 
of non-equilibrium phenomena. 

Thermodynamic losses in nozzles 

The first example concerns the effect of rate of 
expansion and droplet size on the thermodynamic loss 
coefficient in nominally one-dimensional nozzles. 
Normally the nozzle cross-sectional area distribution 
is specified and this can be used to generate the equili- 
brium pressure distribution for use in Eqs (31), (33) 
and (43). For the purposes of illustration, however, 
calculations were performed with nozzles having con- 
stant rates of expansion. The flow was assumed to be 
steady and hence the time to traverse a section of 
nozzle was uniquely related to the corresponding 
pressure drop. The inlet stagnation pressure and wet- 
ness fraction were arbitrarily taken to be 1 bar and 
0.05 respectively and the steam was assumed to be 
initially at equilibrium. 

By applying Eqs (31), (33) and (43), the exit 
supercooling, wetness fraction and thermal energy 
loss coefficient were calculated directly for various 
nozzle pressure ratios. Figs 6 and 7 show the results 
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of the calculations for a range of droplet  sizes and 
rates of expansion. It is evident  that, under  certain 
conditions,  the the rmodynamic  losses in a wet steam 
turbine  stage can be of comparable  magni tude  to the 
profile and secondary losses. 

If the supercooling rises above a certain level 
a secondary nucleat ion will occur  and the analysis is 
no longer valid. For  a given pressure and supercool- 
ing, the nucleat ion rate can be calculated from the 
standard non-isothermal classical theory recommen-  
ded by  a number  of authors. Calculations indicate 
that if the rate exceeds a nominal  value of about  
1 0  ~8 m - 3  S -1 a rapid increase in the number  of droplets 
is imminent .  This threshold is indicated in Figs 6 
and 7. 

Mass flow coefficient 

It is known that the mass flowrate passed by a wet 
steam nozzle or blade passage operating at a specified 
pressure ratio depends on the supercooling deve loped  
dur ing the expansion. A mass flow coefficient #~ can 
therefore  be defined such that: 

non-equi l ibr ium mass flowrate 
d) = (45) 

equi l ibr ium mass fiowrate 

both values being evaluated at the same pressure ratio. 
Calculations of ~b can be per formed simply. 

Having obtained the exit supercooling and wetness 
fraction as described previously,  the flow veloci ty can 
be obta ined from the energy equat ion (Eq (7)) and 
the vapour  density from the equat ion of state (Eq (8)). 
The  mass fiowrate per unit area can then be calculated 
and compared  with the corresponding equi l ibr ium 
v a l u e .  

Fig 8 shows computed  values of ~b as a funct ion 
of nozzle pressure ratio for various constant expansion 
rates and droplet  sizes. It can be seen that the actual 
mass flowrate can be several per cent h igher  than the 

value calculated from equi l ibr ium theory. Note that 
the calculations were terminated at a pressure ratio 
such that the exit veloci ty was close to, but  not quite,  
sonic. The  problem of choking in wet steam flows is 
complex and will be dealt with in a future paper. 

Blade-to-blade flows 

In many  cases a one-dimensional  calculat ion will be 
deemed  insufficient and it may be required to investi- 
gate c i rcumferent ia l  variations in supercool ing and 
wetness fraction, etc. Eqs (31), (33) and (43) can still 
be applied,  however,  as they are also valid along 
streamlines even in the general case of steady three- 
dimensional  flow. 

An approximation to the pressure distr ibution 
in a two-dimensional  blade-to-blade plane can be 
generated using any available equi l ibr ium computa-  
tional method.  For  example,  the pressure distr ibution 
around a typical  steam turbine  blade profile is shown 
in Fig 9 and was obta ined using Denton 's  time- 
marching method 9. Eqs (31) and (33) were then 
applied to obtain the distributions of supercool ing and 
wetness fraction around the pressure and suction sur- 
faces of the blade for various assumed droplet  sizes. 
The  results are also shown in Fig. 9 and it is evident  
that significant variations can exist in the pi tchwise 
direction. Fur thermore ,  secondary nucleations may 
occur, originating on the suction surface and extend- 
ing ei ther part or whole  way across the blade passage. 
Note that a more accurate estimate of the thermo- 
dynamic  loss coefficient can also be obta ined by 
applying Eq (43) along a number  of streamlines and 
mass averaging the results. 

Hub-to-tip flows 

Throughf low analysis of large low pressure turbines 
using streamline curvature or matrix methods is now 
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an established design technique used by all manufac- 
turers. With the exception of one method 6, however, 
the steam is assumed to be in equilibrium below the 
saturation line. User experience of the computer pro- 
gram given by Yeoh and Young 6 suggests that changes 
in the calculated pressure field due to the inclusion 
of the non-equilibrium terms are slight. Good esti- 
mates of the deviation from equilibrium can therefore 
be obtained by applying the theory given here to 
pressure distributions calculated from an equilibrium 
program. The savings in computational time and the 
gain in physical understanding are considerable. 
Obviously the results are subject to the limitations 
imposed by the axisymmetric assumption, but circum- 
ferential variations can always be investigated using 
the approach described in the last section. 

Fig 10 shows the spanwise pressure distribu- 
tion at three stations in the last stage of a modern low 
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Thermal non-equilibrium effects in steam turbines 

pressure steam turbine used for electricity generation. 
The results were obtained using Denton's equilibrium 
streamline curvature throughflow program 1°. Using 
this approximate pressure distribution as a basis, the 
deviations from equilibrium were calculated for a 
range of droplet sizes. Fig 10 shows the spanwise 
distribution of the thermodynamic loss coefficient at 
the nozzle and rotor trailing edges. The maximum 
departures from equilibrium are found at the stator 
hub and rotor tip where the relative velocities and 
rates of expansion are highest and these are regions 
of maximum thermodynamic loss. There is consider- 
able variation of supercooling in the spanwise direc- 
tion and this can be high enough to trigger a secondary 
nucleation depending on the size of the droplets. 
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Flow incidence variations 

Departures from equilibrium in one blade row can 
be responsible for changes to the inlet flow angle of 
the next. In general this is the result of two effects. 
Firstly, the flow exit velocity from row one may be 
significantly altered due to the supercooling 
developed during the expansion. Assuming the relaxa- 
tion zone downstream of the blade to be at constant 
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pressure, the momentum equation (Eq (5)) shows that 
there is no change in velocity as the steam reverts to 
equilibrium. In practice, of course, there may be small 
changes of static pressure between the blade rows, 
but the principle still holds that the deviation from 
the equilibrium velocity at inlet to the second row is 
closely related to the deviation which existed at the 
trailing edge of the first. The non-equilibrium velocity 
is usually lower than the corresponding equilibrium 
value and construction of the relevant velocity 
triangle shows that the flow enters the second blade 
passage with increased negative incidence irrespec- 
tive of whether it is a stator or a rotor blade. 

The second effect involves a turning of the flow 
downstream of the first blade row. In the relaxation 
zone, assumed to be at constant pressure and hence 
constant velocity, the vapour temperature rises as the 
supercooling is depleted and equilibrium is re-estab- 
lished. This results in a decrease in mixture density, 
despite an increase in wetness fraction, and a larger 
cross-sectional area is required to pass the given mass 
flowrate. The velocity vector therefore turns towards 
the axial direction as the supercooling falls to zero. 
As before, the velocity triangle shows that this effect 
also results in increased negative incidence onto the 
following row for both stator and rotor blades. 

Calculations of the change in flow incidence 
have been performed for the turbine stage discussed 
in the previous section. Fig 11 shows the deviation 
from the equilibrium rotor inlet flow angle. Although 
the deviations are comparatively small, some deterior- 
ation in blade performance might result, especially 
in the region of the rotor tip where the profile is highly 
sensitive to small changes in imposed flow angle. 

C o n c l u s i o n s  

A simple, but versatile, method for estimating non- 
equilibrium effects in non-nucleating wet steam flows 
has been described. Apart from requiring an initial 
estimate of the pressure distribution, the technique is 
self-consistent and the resulting equations involve 
only minor approximations. It can be used in 
conjunction with any conventional turbomachinery 
calculation procedure to estimate the supercooling 
distribution, the deviation from the equilibrium wet- 
ness fraction, the thermodynamic losses and other 
flow variables of interest. In order to demonstrate the 
usefulness of the method, a number of applications 
in nozzle and turbine flows have been described. 

The technique presented is not meant to 
replace the complete numerical analyses at present 
being developed by a number of different authors. 
Rather it is meant to provide a framework for a better 
understanding of the behaviour of wet steam flows. 

All the calculations described could have been 
obtained numerically, but the beauty of the semi- 
analytical approach is that it furnishes general results 
and physical insight at low computational expense 
and effort. These features are of considerable value 
in an area which has produced few concrete results 
of use to the turbine designer despite sixty years of 
research. 
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